منابع مشابه
Bayesian nonparametric models for ranked set sampling.
Ranked set sampling (RSS) is a data collection technique that combines measurement with judgment ranking for statistical inference. This paper lays out a formal and natural Bayesian framework for RSS that is analogous to its frequentist justification, and that does not require the assumption of perfect ranking or use of any imperfect ranking models. Prior beliefs about the judgment order statis...
متن کاملParametric Ranked Set Sampling*
Ranked set sampling was introduced by McIntyre (1952, Australian Journal of Agricultural Research, 3, 385-390) as a cost-effective method of selecting data if observations are much more cheaply ranked than measured. He proposed its use for estimating the population mean when the distribution of the data was unknown. In this paper, we examine the advantage, if any, that this method of sampling h...
متن کاملStratified Median Ranked Set Sampling: Optimum and Proportional Allocations
In this paper, for the Stratified Median Ranked Set Sampling (SMRSS), proposed by Ibrahim et al. (2010), we examine the proportional and optimum sample allocations that are two well-known methods for sample allocation in stratified sampling. We show that the variances of the mean estimators of a symmetric population in SMRSS using optimum and proportional allocations to strata are smaller than ...
متن کاملRanked Set Sampling
This paper is intended to provide the reader with an introduction to ranked set sampling, a statistical technique for data collection that generally leads to more efficient estimators than competitors based on simple random samples. Methods for obtaining ranked set samples are described and the structural differences between ranked set samples and simple random samples are discussed. Properties...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computational and Theoretical Statistics
سال: 2016
ISSN: 2384-4795
DOI: 10.12785/ijcts/030103